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Abstract

Methods for solving linear systems of equations are at the heart of many computational
science applications. Examples include science domains such as astrophysics, biology, chemistry,
fusion energy, power system networks, and structural engineering, employing a diverse set of
modeling approaches, such as computational fluid dynamics, finite element modeling, and linear
programming. In this report we discuss how the global view programming language Chapel,
being developed as part of the Cray Cascade project, may be used to express algorithms for
solving these systems. Our focus is on sparse matrices, and the expression of the matrix-vector
product operation required by Krylov subspace solution algorithms. We include an application
that generates a dense linear system.

1 Introduction

Scientific application programs often require the solution of linear systems of the form

Ax = b, (1)

for A ∈ Rn×n and x and b ∈ Rn. The effort spent solving these systems can consume a significant
portion of overall program execution time. As computing environments reach peta-scale, with talk
already of exa-scale, the issues involved in solving these systems are magnified, and will require the
involvement of a variety of experts in order to successfully address them.

Chapel is an emerging programming language[8] designed to present the code developer with a
global view of the computations that make up a scientific application program designed for use on
a distributed memory parallel processing architecture. In this report we explore the use of Chapel
for posing linear equation solution methods within the context of some scientific application areas.

We begin with a brief discussion of methods for solving linear systems and the issues that often
dominate the performance of these methods. Next we present an overview of Chapel, with a focus
on the syntax and semantics used for this work along with an introduction to alternate programming
languages. We then illustrate the use of Chapel in scientific application areas. Finally we offer our
conclusions and discuss our future research.

∗This research used resources of the National Center for Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-
00OR22725.
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2 Motivation

The time spent solving a system of linear equations is a function of two things: first is the choice
of algorithm, and second is the implementation of that algorithm. For dense linear systems, we can
apply “black-box” methods, for example as found in the ScaLAPACK library[17]. Here performance
is a function of the quality of the BLAS library[13] and the inter-process communication protocol
used by the BLACS library[14]. For sparse linear systems, the choices are more complex: sparse
direct or iterative, multi-grid, etc. Sparse direct methods, also captured in libraries (e.g. [28, 1, 37]),
will not be discussed in this report, nor will multigrid.

Iterative methods are also available in libraries (e.g. [20, 4, 18, 3]). However, the key to the
performance of iterative solvers still usually resides with the code developer and problem set up.
In particular, the choice of algorithm and preconditioner determines the rate of convergence, and
the implementation of the matrix-vector product and preconditioner determines the computational
performance.

Regardless of the solution method, the manner in which the problem is described and translated
to a representation for use on a computer plays a significant role in the computation performance of
a solution algorithm. (For ScaLAPACK, we include the time and effort spent getting the data into
the necessary 2d block cyclic format, often a non-trivial task.)

Because of the various issues involved in solving linear systems of equations at the peta-scale,
we want the participation of experts from areas such as numerical analysis, numerical linear alge-
bra, and computer science. Unfortunately, the complexity of the programming mechanisms have
dissuaded these sorts of collaborations. From one perspective, this is a confusing situation: the algo-
rithms are relatively easy to understand and apply. For example, a wide variety of Krylov subspace
solvers have been developed for computing the approximate solution iteratively, as illustrated by
the Conjugate Gradient method[21] shown in Figure 1. From a computational perspective, these

Compute r0 = b−Ax0 for some initial guess x0

for i = 1, 2, . . .
solve Mzi−1 = ri−1 (Preconditioning)
ρi−1 = rT

i−1zi−1

if i = 1
p1 = z0

else
βi−1 = ρi−1/ρi−2

pi = zi−1 + βi−1pi−1

endif
qi = Api (Matrix-vector product)
αi = ρi−1/pT

i qi

xi = xi−1 + αipi

ri = ri−1 − αiqi

check convergence; continue if necessary
end

Figure 1: Conjugate Gradient method
If A ∈ Rn×n is symmetric positive definite and b ∈ Rn, then the following algorithm, using sym-
metric positive definite preconditioner M , generates approximations xi to x ∈ Rn of Ax = b. Com-
putations shown in blue represent the direct interaction of the algorithm with the linear equations.
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algorithms add and scale vectors (perfectly parallel) and compute inner products and vector norms
(global communication). It is through the matrix-vector product (and optionally preconditioning)
that these algorithms interact with the physical problem, which often presents significant challenges.

3 Overview of Chapel

Scientific application programs designed for use on parallel processing architectures are typically
written using Fortran, C, or C++, with the interaction of the distributed memory, distinct name
spaces managed using functionality defined by the MPI specification[36, 19]. This approach requires
the code developer to explicitly manage the distribution and movement of data among the parallel
processes, each of which has its own distinct address space.

Partitioned Global Address Space (PGAS) languages have been developed in order to address
some of the difficulties perceived with this approach. For example, Co-Array Fortran (CAF)[30]
makes data globally accessible via co-array load and store semantics, though it still places the
responsibility for distributing and moving the data between the parallel processes on the code de-
veloper. Unified Parallel C (UPC) [16] extends the C programming language to include a shared
address space view of computation, but it inherits C’s limited support for arrays, with no real
support for multidimensional arrays. Titanium[22] extends JavaTMto include an explicit parallel
Single-Program-Multiple-Data (SPMD) model.

Each of these programming models provide a “fragmented view” of parallel computation in that
they require the code developer to explicitly manage the interaction of the parallel processes as
well as the overall data layout. Chapel provides a “global view” of the computation and associated
data. The goal is to provide an easier means for writing code for execution on a parallel processing
architecture.

We’ve seen this approach before, and the results, especially with regard to performance, have
not been satisfying for a majority of the scientific computing community. For example, OpenMP[10]
presents such a view through the definition of a set of compiler directives and associated syntax,
but is limited to regions of physically shared memory in a node. It may be combined with MPI
to link multiple distributed shared memory regions such as on a cluster of SMP nodes, which then
introduces the fragmented view. High Performance Fortran (HPF)[32] provides a global view, but is
constrained to the SPMD model and supports only a single data structure (the Fortran array). This
rules out a broad range of problems defined on irregular domains as well as the implementations
described in Section 4.2.

Chapel is attempting to combine the strengths of successful programming languages while avoid-
ing their weaknesses. Most fundamentally, Chapel provides a means for defining global data struc-
tures. These domains are constructs that provides the code developer with a means for configuring
data structures that enable a more natural mapping of computations to the parallel processes, in-
cluding distribution of data and associated inter-process data sharing. The overall goal is to combine
a global view of the program with the tools necessary for injecting high-level programmer “intent”
that the compiler cannot easily discover in more traditional programming models.

At the time of this writing, the Chapel language specification[9] is at version 0.702. A prototype
compiler (pre-release version 0.4) has been provided to a small group of programmers who are gaining
experience and providing feedback to the Chapel developers. An updated release is expected in
summer 2007.

Two other notable global view language development efforts are also underway. Fortress[2]
endeavors to present a mathematically based syntax to the code developer. X10[23] extends JavaTM.
We are investigating these languages in a manner similar to that described in this report.
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Figure 2: Global view vs. fragmented view parallel programing model.
Consider a partial differential equation (here Poisson’s Equation) defined on a two dimensional do-
main, illustrated by the center picture. The fragmented view configuration for applying a solution
algorithm on a parallel processing computer is shown on the right. Here the code developer must
manage the interaction of the parallel processes as well as the overall data layout, including explicit
control over the sharing of data among the individual blocks. This is usually accomplished by sur-
rounding each block with a “halo” in order to control data movement (as indicated by the arrows) and
maintain coherency. A global view language such as Chapel captures data associated with the problem
in a single structure which it (as well as a fragmented model) may then surround with space for the
physical boundary conditions. Although the language may provide a means for conveying informa-
tion regarding parallelism in the problem (Chapel does[12]), the code developer is not responsible for
distributing and sharing data amongst the parallel processes.

4 Applications

In scientific application programs, linear equations typically originate from the discretized problem
space, which may be described as a some regular structure (e.g. rectangular with equally spaced
grid points), or an irregular structure described as a graph. The resulting matrix description may
stay within the context of this description (“in place”), may be translated into some artificial storage
format (e.g. some “compressed” format[4], or 2d block cyclic[17]), or may be approximated (matrix-
free methods[26]).

We illustrate a variety of matrix structures in order to discuss various strategies for defining
data structures for storing them and the matrix-vector products that operate upon them. We begin
with a dense linear system that arises from a fusion energy model. Next, a sparse linear system
from a well-known ocean model whose regularity we can exploit. Then we show a broad range of
matrix structures that arise from a variety of science and engineering areas, and sketch strategies
for defining them using Chapel domains.
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4.1 Fusion energy: a dense linear system from a sparse Chapel domain

Fusion energy research is a major area of interest for the US Department of Energy. Devices, such as
the Tokamak Fusion Test Reactor (TFTR)[27] and the International Thermonuclear Experimental
Reactor (ITER)[34] (shown in Figure 3(b)) provide important experimental platforms for studying

(a) Fusion reaction. (b) ITER fusion energy device. (c) AORSA Fourier space, with
the physical (cavity) space
shown in blue.

Figure 3: Fusion energy modeling

the necessary plasma dynamics. The AORSA computer program provides a computational means
for studying the behavior of electromagnetic waves, a fundamental factor in these dynamics.

The two- and three-dimensional all-orders spectral algorithms (AORSA) code[24] is a full-wave
model for radio frequency heating of plasmas in fusion energy devices. AORSA operates on a spatial
mesh, with the resulting set of linear equations solved for the Fourier coefficients. A Fast Fourier
Transform algorithm converts the problem to a frequency space (see Figure 3(c)), resulting in a dense,
complex-valued linear system, which is solved using functionality provided by the ScaLAPACK[17]
or a locally modified version of HPL[33, 11] libraries.

AORSA’s Fourier space can be defined using a Chapel arithmetic domain. The physical space is
constructed by scanning the Fourier domain and determining inclusion or exclusion of a grid point
in the device cavity. These points are defined using a Chapel sparse domain subset of the Fourier
domain. A code segment illustrating this idea is shown in Figure 4.

The solution of the dense linear system using HPL in AORSA has achieved 75.1 TFLOPS exe-
cuting on 11,250 dual core processors of Jaguar, the Cray XT4[25] located at Oak Ridge National
Laboratory (ORNL). This scale has allowed researchers to conduct experiments at resolutions pre-
viously unattainable. For example, preliminary calculations using 4,096 processors allowed the first
simulations of mode conversion in ITER. Therefore there is no need to implement this algorithm
using Chapel. Instead, this highlights the importance of interoperability of Chapel with libraries
written in other languages and programming models, in this case Fortran with MPI1.

1More fundamentally, this highlights the need for research into the interaction of global view and fragmented view
languages.
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const FourierSpace = [ 1.. nnodex, 1.. nnodey ];

var
fgrid,
mask

: [ FourierSpace ] real;

// Work in Fourier space, with grid points in the physical space flagged in array mask, used to define domain PhysSpace:

PhysSpace : sparse subdomain ( FourierSpace ) = [ i in FourierSpace ]

if ( mask(i) ) then i;

var pgrid :[ PhysSpace ] real;

Figure 4: AORSA: Fourier and Physical space defined using Chapel domains

4.2 Ocean modeling: a regular sparse matrix

POP (Parallel Ocean Program) is an ocean circulation model[31]. Developed at Los Alamos Na-
tional Laboratory, it also serves as the ocean component of the Community Climate System Model
(CCSM[6]).

POP models ocean circulation by solving time dependent equations describing fluid motion in
three dimensions. Computation takes place on an orthogonal curvilinear coordinate system on a
dipole[35] or a tripole grid[29]. The latter is shown in Figure 5.

(a) Tripole grid (b) Output

Figure 5: POP ocean discretization using a tripole grid. (These figures are from the POP web
pages[31].

Computation of surface pressure requires the solution of the 2-dimensional barotropic equations.
The implicit solution method employed in the barotropic phase configures an elliptic equation of the
form

AF = B (2)

where F is a field (in this case surface pressure) and A is the operator defined as

AF = a∇ · (H∇F ) (3)

where a is the cell area. For each model time step, a linear system of equations is generated of
the form shown in (1). The solution of this symmetric positive definite sparse system is computed
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iteratively most often using the Conjugate Gradients (PCG) algorithm, previously shown in Figure
1.

A linear equation in the system is defined as a function of a grid point and the eight grid points
immediately adjacent to it. Thus the matrix-vector product, computed as part of each iteration,
may be formulated as a nine-point stencil sweep across the grid. The Fortran implementation of
this computation is shown in Figure 6. Each processor owns arrays of size imt × jmt for storing

real (kind=dbl kind), dimension(imt,jmt), intent(in) ::
& X, XOUT, ! array to be shifted
& CC,CN,CS,CE,CW, ! weights in each of the nine directions
& CNE,CSE,CNW,CSW

do j = jphys b, jphys e
do i = iphys b, iphys e

XOUT(i,j) = CNE(i,j)*X(i+1,j+1) + CNW(i,j)*X(i-1,j+1) +
& CSE(i,j)*X(i+1,j-1) + CSW(i,j)*X(i-1,j-1) +
& CN (i,j)*X(i ,j+1) + CS (i,j)*X(i ,j-1) +
& CE (i,j)*X(i+1,j ) + CW (i,j)*X(i-1,j ) +
& CC (i,j)*X(i,j)

end do
end do

Figure 6: POP’s matrix-vector product posed as 2d 9-point stencil computation.

the matrix coefficients and grid points as well as for ghost cells (also called halos) filled using inter-
process communication. The subdomain of grid points actually owned by a parallel process is a
subset of that space, running from iphys b to iphys e to jphys b to jphys e. The coefficients for
each (i, j) linear equation in the system are stored in separate arrays, e.g. CNE(i,j), CNW(i,j),
which serve as weights for the stencil.

The MPI implementation requires that the code developer explicitly distribute and move the
data between the parallel processes (as previously shown in Figure 2).

Using Chapel we can create, in essense, a translation from Fortran, shown in Figure 7. Note that

const
PhysicalSpace = [ 1..imt global, 1..jmt global ], // Grid points in the 2d physical domain.
AllSpace = PhysicalDomain.expand(1); // Physical domain plus boundary.

var
X, XOUT,
CNW, CN, CNE, CW, CC, CE, CSW, CS, CSE // Weights in each of the nine directions.

: [ AllSpace ] real;

// Define neighbors:

const
NW = (-1,-1), N = (-1,0), NE = (-1,1), W = (0,-1), E = (0,1), SW = (1,-1), S = (1, 0), SE = (1,1);

forall i in PhysicalSpace do

XOUT(i) = ( CNW(i)*X(i+NW) + CN(i)*X(i+N) + CNE(i)*X(i+NE) +
CW(i)*X(i+W ) + CC(i)*X(i) + CE(i)*X(i+E ) +
CSW(i)*X(i+SW) + CS(i)*X(i+S) + CSE(i)*X(i+SE) );

Figure 7: POP’s matrix-vector product in Chapel using parameterized tuple arithmetic.

the spaces containing the grid points and coefficients are defined using the global number of grid
points imt global and jmt global, with no need to be concerned with ghost space or other issues
associated with the parallel processing environment.

An arithmetic domain describes the grid points in the physical domain; from it, we derive a
second domain, which describes the grid points as well as space for applying the physical boundary
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conditions. Arrays are allocated using the latter space, while iteration is controlled by the physical
space.

An alternative implementation can be constructed by describing the matrix-vector product stencil
operation as a weighted reduction operation. This approach requires that we first reconfigure the
storage of the matrix coefficients. We generate and store the matrix elements as sets of 3×3 blocks,
where each block represents the matrix coefficients for a physical grid point, as illustrated in Figure
8. That is, the nine arrays storing the matrix coefficients can be replaced with a single “array of

const
PhysicalSpace = [ 1..imt global, 1..jmt global ], // Grid points in the 2d physical domain.
Stencil = [ -1..1, -1..1 ]; // 2d 9-pt stencil domain.

var
Coeff: [ PhysicalSpace ][ Stencil ] real; // ‘‘Array of arrays’’ for storing matrix coefficients.

Figure 8: The matrix coefficients associated with each grid point are stored as 3 × 3 blocks in the
“array of arrays” defined domain Coeff.

arrays” also shown in Figure 8. Coefficients for the ith linear equation are Coeff(i)(k) for each k
in domain Stencil.

The sparse matrix-vector product may now be posed as a stencil computation, with matrix
coefficients serving as weighting factors, as shown in Figure 9. The operation is addition, signified

// Perform matrix-vector product:

forall i in PhysicalSpace do
XOUT(i) = + reduce [ k in Stencil ] Coeff(i)(k)*X(i+k);

Figure 9: POP’s matrix-vector product in Chapel using the reduction operator.

by “+”. The scope of the reduction operator is controlled by [k in Stencil], which is shorthand
syntax for an expression-level forall loop.

4.3 More examples: structured and unstructured matrices

Figure 10 show a variety of matrix structures from a range of science and engineering areas2. Some
of these systems contain substructures that may be exploited, while other systems show no regular
structure. Chapel domains can be constructed to capture these structures, perhaps as a set of
substructures.

2These matrices are found in the Harwell-Boeing set[15], may be downloaded from the Matrix Market web site[7].
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(a) 2D fluid flow in a driven
cavity; non-symmetric and in-
definite (e30r1000)

(b) Model of H2+ in an Elec-
tromagnetic Field. (qc2534)

(c) Structural Engineering
Matrix (eigenvalue matrix)
(bcsstk02)

(d) Air-traffic Control Model:
Hessian of the objective func-
tion. (zenios)

(e) Astrophysics: Nonlinear
radiative transfer and statisti-
cal equilibrium (mcca)

(f) Jacobian of a nonlinear
system of ODEs modeling a
laser. (arc130)

(g) One of fifteen regions in
world economic model (wm1)

(h) Simulation of computer
systems. (gre115)

(i) Western US power net-
work. (bcspwr10)

Figure 10: Matrix structures
These graphs represent the structure of matrices from a variety of scientific and engineering areas.
The matrices are from the Harwell-Boeing test set, available from the MatrixMarket[7].
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Matrix 10(a) is not quite regular (nor symmetric) and thus the matrix-vector product cannot
be posed as a stencil. It is ill-conditioned (O(1010)), so some effort at ensuring strong performance
would be desirable.

Matrix 10(b) arises from a physical problem set up to determine the laser-induced molecular
resonance states of H+

2 in an electro-magnetic field. The resulting matrix is complex value, symmetric
indefinite. It has a clear block structure (as well as an upper and lower band) that should be
exploited. This structure could also form the basis of a preconditioning strategy. We could define a
domain that captures the coefficients of a block and the diagonal elements of the rows

Matrix 10(c) is from structure engineering problem, and is actually an eigenvalue matrix. In
other common programming languages, such as C or Fortran, this would most likely be represented
as a dense matrix in a 2d array. With Chapel, we could define a sparse domain, saving some memory,
and still perhaps apply a sparse algorithm effectively.

The other matrices (10(d)-10(i)) have far less to no regularity that could be exploited. However,
it would be worth exploring strategies involving subsets of the matrices (notably 10(f)). Otherwise,
opaque domains would be necessary in order to describe the matrices as graphs, which allows special
algorithms to be applied.

5 Conclusions and Future Work

We have demonstrated the syntax and semantics of Chapel using a variety of scientific applica-
tions. Although our focus is on the solution of linear systems, the language capabilities illustrated
have broad applicability and appeal within the scientific computing community. In particular, the
ability to create customized data structures, and apply operations on them in a manner that is
not dependent upon that structure (i.e. polymorphism) is a powerful capability both in terms of
programmability and performance potential.

The alert reader will notice that the code that applies the matrix-vector multiplication com-
putation is indepedent of the data structure (domain) definitions. For example, referring back to
Figure 9, note that we could change the domain definition of the stencil and the data arrays, yet
the computation would remain unchanged. Non-rectangular stencils may be defined using a sparse
domain as illustrated in Section 4.1. Both of these issues are discussed in more detail in [5].

We look forward to tracking the progress of the Chapel specification and prototype compiler,
both as a means of investigating the expressiveness of the language within the context of important
applications and also the performance capabilities and potential.

We are actively investigating the use of Chapel, as well as Fortress and X10, for other classes
of computations. More interesting (and more challenging!) are our investigations into how Chapel
constructs might influence the development and choice of algorithms in posing computational science
experiments.
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